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What symmetry is broken in the superconductor-normal 
phase transition? 
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AbstmcL We show that the superconducting-normal phase transition is due to spon- 
taneous breaking of magnetic flux symmetry. In  two dimensions the symmetry gen- 
erator i s  + = S d * i  B(z) and in three dimensions there are three generators 

= Jd3z  B,(z), only two of which are independent due to the absence of sources 
of magnetic field. In the normal phase the syminetly is spontaneously broken with a 
massless photon as a corresponding Goldstone boson. In  the superconducting phase the 
symmetry is unbroken and the magnetic flux annihilates the vacuum which expresses the 
essence of the Meissner effect. In  two dimensions \ve explicitly construct the pertinent 
gauge-invariant order parameter which i s  the operator creating Abnkosov vorlices. Its 
vacuum expectation value vanishes in the superconducting ground stale, while i t  is finite 
in the vacuum of the normal phase. 

1. Introduction 

Second-order phase transitions are frequently, if not always, associated with sponta- 
neous breakdown of a global symmetry. I t  is then possible to find a corresponding 
order parameter which vanishes in the disordered phase and is non-zero in the or- 
dered phase. Qualitatively the transition is understood as condensation of the broken 
symmetry ‘charge’ carriers. The critical region is effectively described by a local 
Lagrangian involving the order parameter field. 

At the first glance the superconductor-normal phase transition is an important 
exception. Colloquially it is said sometimes that  the electric charge U,( 1) symmetry 
is broken in superconductors with a non-vanishing ‘order parameter’ A (+T?L). A 
little though4 however, shows that this should not be taken literally. If a contmuous 
symmetry is spontaneously broken, the Goldstone theorem [I]  ensures the existence 
of massless excitations. For example, in planar or Heisenberg (anti)ferromagnetS 
one always finds soft magnons. On the other hand, the physical spectrum of a 
superconductor does not contain any such excitation. Also the ‘ order parameter’ A 
does not vanish only when rhere is no coupling to electrontagnetism. Consequently in the 
complete theory including electromagnetism, U,( 1) is not broken spontaneously. The 
interpretation of this is that the ‘would-be Goldstone boson’ is eaten by the photon 
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which acquires a mass (finite penetration depth) via the Anderson-Higgs mechanism 

This mechanism (‘local gauge symmetry breaking’), however, lacks description in 
physical terms. Indeed, according to the very general Elitzur’s theorem 121, local 
symmetly can never be broken and a non-gauge-invariant quantity never acquires a 
non-zero vacuum expectation value (VEV). 

Thus neither global electric charge U,(1) nor local gauge symmeuy is broken 
at the superconductor-normal phase transition. However, as we show in this paper, 
such a symmetry does exist. It is identified here as a continuous symmetry generated 
by a magnetic flux. Here we outline the definition of the symmeny and the ensuing 
physical picture of the phase transition in the simpler two-dimensional case. The 
more complicated threedimensional case is deferred to section 4. 

In two dimensions the flux symmetly is generated by the full magnetic flux pene- 
trating the plane 
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111. 

0 = 5(r)d’r. J 
The continuity equation for the corresponding current 

Pat = B j b  5 -.?J E, , i 3 j , =  1,2 

is the homogeneous Maxwell equations of electrodynamicst 

= - t ; j d , E ,  
1 a5 _- 
c at (3) 

We show thdt  the mode of realization of this U < > ( l )  symmetry distinguishes between 
the superconducting and the normal phases. In the normal phase U,( 1) is sponta- 
neously broken. The Goldstone theorem then requires existence of massless mode. It 
is shown in section 2 that this b the (massless:) photon. The superconducting vacuum 
is invariant under the action of U,( 1). the symmeny is unbroken and indeed there 
are no massless modes in the superconducting state. 

In section 2 we construct the order parameter V ( x ) ,  which is generally an eigen- 
operator of 0 

In the superconductor the VEv of V ! r )  vanishes and it creates the Abrikosov vortex 
carrying y units of magnetic Dux. In the normal phase I/( +) acquires non-zero VEX 
which distinguishes between ditferent degenerate vacua. 

In the superconducring phase a single Abrikosov  vortex^ is an eigenstate of the 
conserved ‘charge’ 0, The energy gap A, between the vacuum and the lightest 
flux carrying state ‘the vortex’ is finite. This expresses the essence of the Meissner 
effect Application of small external magnetic field amounts to the addition to the 

t Inlroduction ofveclor potential A,  solves lhs equation uplicidy. This does no1 mean that the equalion 
is void of dynamical content. 
$ The phase we term normal can be either metal or insulator. Marslessncss of photon is  undentood as 
the absence of magnetic m a s  which is relevan1 for superconductivity. In the metallic Stale a non-zero 
electric mass is present due to plasma oscillations. 
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Hamiltonian of a perturbation A H ,  which also commutes with @. The perturbed 
vacuum acquires an admixture of excited stares, but since A H  mmmutes with 0 it 
cannot contain states with non-zero flux. Consequently infinitesimal magnetic fields 
cannot penetrate the sample. However when the external field is large enough this 
perturbative argument is no longer valid, and eventually a fluxon is produced. The 
required magnetic energy must be larger than the energy gap in the fluxon channel. 
Therefore H e ,  is determined by A,. In this picture it is clear that the creation of 
fluxons is the only way the magnetic field can penetrate the sample since any mixed 
state should be an eigenstate of @. 

We stress that in terms of symmetries of the physical Hilbert space the symmetry 
breaking pattern is reversed compared with the aforementioned colloquial terminol- 
ogy: in the superconducting phase no symmetry is broken while the normal state 
breaks the flux symmetry. 

The paper is organized as follows. In section 2 we define the order parameter 
V in two dimensions and calculate its VEV in the normal phase. In section 3 we 
construct explicitly the vacuum wavefunctional in the superconducting phase and 
show that it is annihilated by 0, and leads to vanishing VEV of V .  In section 4 we 
outline the generalization to the three-dimensional case and give a short summary of 
the results. The appendix contains the dual representation of pure two-and three- 
dimensional electromagnetism in which the flux symmetry acts as a simple global shift 
of a massless field. 

2. The hvo-dimensional flux symmetry and order parameter in  the normal phase 

Here we discuss in more detail the flux symmetry transformations in two dimen- 
sions. Consider the Bcs-type Hamiltonian with two-body interaction U and chemical 
potential p 

In the Hamiltonian formalism in which 

the following canonical commutation relations are imposed 

The flux 'charge' @ is a gauge-invariant operator which commutes with Ai ?l,t and 
$. It also commutes with E , ( I )  for I not on the sample boundary. For I on the 
boundary 
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where n , ( + )  is the unit tangent vector to the boundary at the point I and L is a 
linear dimension of the sample. 

The order parameter corresponding to the flux symmetry breaking is a local 
eigenoperator of a, equation (1). Since is linear in Ai ,  the operator 1’ will be 
sought in the following form 

A Kovner and B Rosensrien 

V ( z ) = C r x p i g / d ’ y  [ ~ ~ ( z - y ) k ; ( y ) + ~ b ( z - y ) f ~ ( y ) ]  C (8) 

where e(z)  z Equation (4) is satisfied by 

‘;ja;al(z) = P ( z )  

The requirement of locality of V with respect to gauge-invariant quantities J ,  E 
$;(ia; + eAi)Q,  further restricts the choice of a ( z )  and b ( r ) .  In particular, for 
5 # y, the commutator 

IJ;(s)? V(y) l  = :i-ega;(r - Y) + a:[egb(z - Y ) I ~ ~ ~ ~ ~ ) ~ S ) V ( Y )  (9) 

should vanish. There is no continuous function b ( z )  for which the right-hand side of 
equation (9) vanishes. There are, however, discontinuous functiorw: of this kind: 

where the contour C( z )  starts at the origin and ends at the point I .  The function 
b(z )  has a branch cut which starts at the origin and depends on the choice of the 
contour C(r). The simplest choice is 

1 1 
2~ ‘ J  I? 2ir 

a,(.) = - E .  b ( s )  = -@(I) 

where @(I) is an angle between the  vector I; and the i., axis, 0 < 0 < 2n. In this 
case the discontinuity lies along the positive direction of the first axis. In order that 
the discontinuity of b ( r )  does not spoil the locality of \’(I), the eigenvalue g must 
be quantized in units of Z!nc/et 

g = 2ncn/e .  (12) 

This coincides with the usual quantization of magnetic flux of the Abrikosov vortices. 
The fact that V creates the vortex is seen from the relation 

I ’ ( r ) B ( y ) V ’ ( r ) =  B ( y ) - g & ’ ( s - y ) .  (13) 

The phase of the theory is determined by the VEV of the order parameter. We 
now calculate (V)  in the normal phase and show that it does not vanish. Different 
values of the order parameter distinguish between degenerate vacua. 

t The location of the discontinuity (the Dirac string) does no1 influence any gauge-invariant physical 
quantity. This is so, since the  charge density opraror n(z) is quantized and the discontinuity across the 
cut is a multiple of Z r r  and therefore is not felt in the exponent equation (8). 
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To the leading (zeroth) order in e the vacuum state in the normal phase is the 
direct product of the fermionic Fock vacuum and the vacuum photonic state 
10,C)ph. The parameter C labels different vacua connected to the standard Fock 
vacuum 10)ph E 10-C = O)ph by the transformation 

10,C)ph = e’(Q~O)ph. (14) 

The fact that the flux @ does not annihilate the state 
momentum space 

is seen as follows. In the 

@ = k-U I imw”?(k) (a t (k j  + a ( k ) j  w(k)  = c@. (15) 

This operator is not identically zero (although w(0) = 0) since the normalization 
of creation and annihilation operators is not 1 but a Dirac delta function. With an 
infrared regulator L (the finite size of the sample) the commutator is 

[ak.a , l  t = L?6&,-,. 

@lO)ph o( L”? 1-4 1 l L ) ) .  

Applying on the vacuum state one obtains a state with one soft photon 

(16) 

This diverges in the limit L - 00 as is usually the case with matrix elemenn of 
spontaneously broken charge [3]. The vacua with different C are coherent states of 
the soft photons. 

Another way to see this is to use the Schrodinger representation of the quantum 
field theory ( Q F ~ )  [4] which will be useful for our purposes. The wavefunctional of 
the Fock vacuum in the field basis is the Gaussian 

where N is the normalization factor. Note that III, does not depend on the zero 
frequency component of .Ai. Therefore the action of A,(O) on the vacuum leads to 
a non-normalizable wavefunctionalt A,(0)@,,[Ai(z)]. Therefore we see again that 
@ does not annihilate the Fock vacuum. The set of the degenerate vacua is given in 
this representation by 

(18) (A i (2 ) /0 ,C) ,h  = @<[A,(z)1  = @ u [ A t ( ~ j l e  i( Jd’zB(z) 

There is yet another convenient way to see the degeneracy of the QED vacuum. In 
two dimensions the free photon is completely equivalent to free massless relativistic 
scalar by duality transformation. The flux transformation then is just the shift of the 
scalar field. This is described in detail in appendix. 

t This is fully analogous Lo [he quantum mechanics of a free panicle. There the ground state is a constant 
$n(z) = N and r$n(z)  is not nolmalizable. 
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We now calculate the expectation value of the order parameter V in the Fock 
vacuum. The straightforward calculation gives 

(01 exp [ ig J d2z a;( I) E;( z)] 10) = exp [ - $ (0 1 (1 ai Ei)’1 0)] 

where A is an ultraviolet cutoff. For other states 

The corrections to this result are small for small e and can be systematically calculated 
in perturbation theory (51. The spontaneous breaking of the flux symmetry in the 
normal phase leads to the appearance of a massless Goldstone mode. This is clearly 
the massless photon. The density of the flux charge E ( + )  is linear in the photon 
creation and annihilation operators and the  flux charge itself creates from the vacuum 
the state with one soft phonon equations (15)-(16). 

3. Superconducting phase 

’lb perform the calculation in the superconducting state it is more convenient to use 
the low-energy effective Hamiltonian instead of the original BCS one, equation (5). In 
the superconducting state the relevant excitations can be described by the composite 
complex field A ( x )  E + , ( Z ) $ , ( I ) .  Assuming that the absolute value of the A(x) is 
k e d  

A(+)  = Aoe”(”) 

and integrating over original fermions one obtains (see, for example, [6]) 

H = H , +  H .  

The operator fi contains terms with more than two derivatives and/or powers of ?r 

and 

Here ?r is a field canonically conjugate to 0 

[n(+).Q(y)] = - i S ( s -  y). (21) 

The charge q is twice that o l an  electron, tiL v ; / 3  and p is the chemical potentialt. 

t The form of HZ d o a  not depend on the two-body interaction U( z - y) in equation (5) as long as 
the system is In the superconducting slate. 
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The Coulomb constraint in terms of these variables is 
9 c = a;E, - - “ + P o  = 0 
C 

where po is the charge density of the homogeneous neutralizing background. 
We now write down explicitly the superconducting ground state in the (functional) 

Schrodinger representation and demonstrate that it is annihillated by @ and that the 
VEV of the order parameter V vanishes. 

It is useful to define a new variable ?r instead of K, eliminating the linear term in 
the Hamiltonian, equation (20): 

ii = K + +AO. (24) 

The quadratic part of the Hamiltonian and the constraint then become 

Canonical commutation relations of ir with I3 are identical to those of K. 

treated perturbatively. 

are represented by functional derivatives: 

We shall find the vacuum of If., assuming that higher derivative terms can be 

In the Schrodinger functional representation the canonically conjugate momenta 

In the momentum space these become 

6 E ’ ( k )  = -i 6 % ( k )  = -i- 
6 0 ( - k )  6A’( -k) 

Imposing the constraint equation (26) on the physical states in the Hilbert space 
leads to the following form of the admissible wavefunctionals 

Q’[6’(x),AZ(z)] = e x p  \t [ate- QA, ,B]  (29) 
C 

where the wavefunctional & obeys thc linear homogeneous constraint equation 

(30) 

The Hamiltonian H? is quadratic in the remaining variables and thus its ground 
state is a Gaussian wavefunctional 
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The unique solution obeying the constraint equation (30) is 

A Kolmer and B Rosensrien 

C(k) = k ? H ( k )  

The fact that there exists only one non-degenerate physical ground state in the su- 
perconducting phase is very important. Neglecting coupling to electromagnetism, 
there would have been a degeneracy: shilts of the U(k = 0)  variable. The coupling 
to electromagnetism imposes the Coulomb constraint eliminating this degeneracy. 
One can check explicitly that Q is an eigcnfunction of the electric charge operator 
Q E ir(k = 0), stressing once again that U,( 1) is unbroken in the superconductor. 

This can 
be seen as follows. Due to the fact that G i j ( k  = 0) jk 0 (there are no zero modes), 
the wavefunctional Ailu,[O, A] is normalizable for any k. Therefore 

The magnetic flux symmetry generator 6 annihillatcs the vacuum 

(I)@ 0 - - Ir-0 lini c i j k i A J ( k ) @ , ,  = 0 .  (33) 

Now we turn to the calculation of the expectation value of the order parameter 
V equations (S)-(11). Using the Gauss law equation (26) and integrating by parts it 
can be rewritten via operators Ei only 

with ?I,(+) = 6,?6(s2)O(r,)  where O ( i )  is a step function. For Gaussian wavefunc- 
tionals the expectation value of any operator factorizes [7] 

where 
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and the result is 

+ k;/---G=r-]} c2 + ( k 2 c 4 / 2 A ~ g 2 v 2 )  

The integration over k ,  diverges linearly in the infrared and we obtain 

( v )  = e-=’ (39) 

where a is a finite scale and L is the  sample’s dimension (an infrared cutom. In the 
L - 00 limit the vEV vanishes. 

4. Three-dimensional case and conclusion 

We used the Bcs-type theory in two dimensions in  order to illustrate the concept of 
the flux symmetry in the simplest setting. Most superconductors are, however, three- 
dimensional (although sometimes highly anisotropic). In this section we describe the 
generalization of the flux symmetry to three dimensions [SI. 

Here instead of one flux density operator (magnetic field) B, there are three 
components of a vector p i  = Bi, each of which is a density of a COnSeNed charge. 
This is the consequence of the homogeneous Maxwell’s equations 

With the identification of - e i j k E k  = & as three current densities these are conti- 
nuity equations ensuring the conservation of three global charges ai = Jd31 B;(z). 
However out of the three flux charge densities only two are independent, due to the 
constraint 

aiB, = 0 

The additional complication compared with two dimensions is that the charge densi- 
ties themselves are not rotational scalarst. 

In  the normal state the vacuum is degenerate under the action of 0; and the 
symmetry is spontaneously broken. To convince oneself that this is indeed the case one 
can either repeat the arguments of section 2 or perform the duality transformation. 
The latter is performed in the appendix. The photons are the Goldstone modes 
resulting from this spontaneous breakdown. l b o  polarizations of massless photons 
correspond to two independent broken symmetries [SI. 

In the superconducting state the flux symmetry is unbroken, B,IO) = 0. Corre- 
spondingly the spectrum does not contain massless excitations. The open flux tubes 
carry the conserved quantum number of flux. ti,, in three dimensions is determined 

t I1  is a special feature of [WO dimensions ihai B is a roiational scalar. This is related lo the fact that 
the phoion in two dimensions has only one lransversr polarization and is equivalent lo scalar panicle. 
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again by the  energy density of the flux tube. Now it is much more complicated 
to construct explicitly the order parameter and at this stage we cannot present an 
expression which satisfies all the relevant symmetries. 

To summarize, we have shown that the superconductor-normal phase transition 
can be described in the same terms as the standard order-diisorder phase transition. 
The symmetry which is spontaneously broken at the phase transition point is gener- 
ated by the magnetic flux symmetry. In two dimensions we were able to construct 
explicitly the local order parameter. Its VEV vanishes in the superconducting phase 
while it is non-zero in the normal phase. The flux symmey  in the normal phase 
is spontaneously broken which leads to the appearance of the massless Goldstone 
mode-the photon. I n  the superconducting phase the symmetry is unbroken. The 
existence of the energy gap A, in the flux carrying channel is the essence of the 
phenomenon of perfect diamagnetism (the Meissner effect). This energy gap (which 
determines the critical magnetic field Ifc,) is more directly related to the perfect 
diamagnetism than the gap A, in the electrically charged channelt. 

These conclusions arc independent of the particular microscopic model of super- 
conductivity. For example, they apply to novel hypothetical mechanisms of super- 
conductivity which appeared in conncction to high T, materials like two-dimensional 
Hubbard models, anyon superconductivity etc 

We hope that this new general point of view provides additional insight into the 
phenomenon of superconductivity and gives a more satisfactory universal description 
of the phase transition in gauge-invariant physical terms. 

A Kolmer and B Rosenslien 
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Appendix 

In this appcndk we perform dual transformation in the free Maxwell theory. In two 
dimensions this leads to a thcory of a free massless scalar. In three dimensions this is 
a theory of a free dual vector potential. In both cases the magnetic flux symmetry in 
dual formulation is represented by global shift of a massless field and its spontaneous 
breaking is apparent on the classical level. We use a variant of duality transformation 
introduced in [SI. 

Let us start with two dimensions. Canonically (in Hamilton gauge) the theory is 
described by the Hamiltonian 

with the constraint 8; E, = 0 The linear constraint is easily solved in terms of a single 
scalar field Y.( 2) 

E, = ci, a, x .  ( M )  

t Indeed thcre mist gapless superconductors with A, = 0 which nwerlhel~s  exhibit the Mcissner eiiecl. 
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The magnetic field B ( r )  is just the momentum canonically conjugate to x(r) 

B = -r. (‘43) 

In these variables the Hamiltonian becomes 

d2+[nz +(ais)* ] .  

The flux symmetry in these notations is the familiar shift transformation 

~ ( r )  - x(r) +constant. (fi) 

This symmetry is spontaneously broken [3], with x itself (which interpolates the 
photon) as a Goldstone boson. 

This statement remains true in the normal (Coulomb) phase of the interacting 
theory as well, although one now can not explicitly solve the Coulomb constraint [SI. 

In three-dimensional QED the magnetic symmetly is more complicated. The 
currentt F,,” is an antisymmetric tensor and hence the corresponding charges 
a,, = J d3spp, are no longer rotational scalars. ‘9, identically vanishes, while out 
of three charge densities pobi(r)  = B , ( r )  only two are independent: a,B,(r) = 0. 
Spontaneous breakdown of these two symmetries leads to the appearance of two 
massless photons with helicities *I. In  the free Maxwell theory one still has a ‘shift’ 
interpretation of the magnetic symmetry in terms of the dual vector potential’ x ; ( z ) .  
The Coulomb constraint is solved by 

Ei = q I k 8 j x k .  (A6) 

Bi = - xi  l x , (2 ) , r j (Y) I  = i6,j63(2-- Y). (A7) 

The magnetic field Bi is still conjugate to xi  in Hamiltonian formalism 

In variables x i  and ?ii the Hamiltonian takes a form 

I t  has a dual gauge symmetry generated by 8, B,. The magnetic symmetry generators 
just shift fields 

X , ( Z )  - L ( 2 )  t c,. (A9) 
On the physical subspace, however, they are not independent, since a,B, = 0. TWO 
transversal components of x, interpolate physical photons. In accordance with the 
Goldstone theorem they are the Goldstone bosons corresponding to the breakdown 
of two independent generators of the flux symmetry. 
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